Myofilament calcium sensitivity and cardiac disease: insights from troponin I isoforms and mutants.

نویسندگان

  • Margaret V Westfall
  • Andrea R Borton
  • Faris P Albayya
  • Joseph M Metzger
چکیده

The heightened Ca2+ sensitivity of force found with hypertrophic cardiomyopathy (HCM)-associated mutant cardiac troponin I (cTnIR145G; R146G in rodents) has been postulated to be an underlying cause of hypertrophic growth and premature sudden death in humans and in animal models of the disease. Expression of slow skeletal TnI (ssTnI), a TnI isoform naturally expressed in developing heart, also increases myofilament Ca2+ sensitivity, yet its expression in transgenic mouse hearts is not associated with overt cardiac disease. Gene transfer of TnI isoforms or mutants into adult cardiac myocytes is used here to ascertain if expression levels or functional differences between HCM TnI and ssTnI could help explain these divergent organ-level effects. Results showed significantly reduced myofilament incorporation of cTnIR146G compared with ssTnI or wild-type cTnI. Despite differences in myofilament incorporation, ssTnI and cTnIR146G expression each resulted in enhanced myofilament tension in response to submaximal Ca2+ under physiological ionic conditions. Myofilament expression of an analogous HCM mutation in ssTnI (ssTnIR115G) did not further increase myofilament Ca2+ sensitivity of tension compared with ssTnI. In contrast, there was a divergent response under acidic pH conditions, a condition associated with the myocardial ischemia that often accompanies hypertrophic cardiomyopathy. The acidic pH-induced decrease in myofilament Ca2+ sensitivity was significantly greater in myocytes expressing cTnIR146G and ssTnIR115G compared with ssTnI. These results suggest that differences in pH sensitivities between wild-type ssTnI and mutant TnI proteins may be one factor in helping explain the divergent organ and organismal outcomes in TnI HCM- and ssTnI-expressing mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Effects of cTnC DCM Mutations on Calcium Sensitivity and Myofilament Activation-An Integrated Multiscale Modeling Study.

Mutations in cardiac troponin C (D75Y, E59D, and G159D), a key regulatory protein of myofilament contraction, have been associated with dilated cardiomyopathy (DCM). Despite reports of altered myofilament function in these mutants, the underlying molecular alterations caused by these mutations remain elusive. Here we investigate in silico the intramolecular mechanisms by which these mutations a...

متن کامل

Pathogenic peptide deviations support a model of adaptive evolution of chordate cardiac performance by troponin mutations.

In cardiac muscle, the troponin (cTn) complex is a key regulator of myofilament calcium sensitivity because it serves as a molecular switch required for translating myocyte calcium fluxes into sarcomeric contraction and relaxation. Studies of several species suggest that ectotherm chordates have myofilaments with heightened calcium responsiveness. However, genetic polymorphisms in cTn that caus...

متن کامل

Troponin I phosphorylation and myofilament calcium sensitivity during decompensated cardiac hypertrophy.

We have measured myocyte cell shortening, troponin-I (Tn-I) phosphorylation, Ca2+ dependence of actomyosin adenosinetriphosphatase (ATPase) activity, adenosine 3',5'-cyclic monophosphate (cAMP) levels, and myofibrillar isoform expression in the spontaneously hypertensive rat (SHR) during decompensated cardiac hypertrophy (76 wk old) and in age-matched Wistar-Kyoto rat (WKY) controls. The decrea...

متن کامل

Troponin I chimera analysis of the cardiac myofilament tension response to protein kinase A.

Viral-mediated gene transfer of troponin I (TnI) isoforms and chimeras into adult rat cardiac myocytes was used to investigate the role TnI domains play in the myofilament tension response to protein kinase A (PKA). In myocytes expressing endogenous cardiac TnI (cTnI), PKA phosphorylated TnI and myosin-binding protein C and decreased the Ca2+ sensitivity of myofilament tension. In marked contra...

متن کامل

Single histidine-substituted cardiac troponin I confers protection from age-related systolic and diastolic dysfunction.

AIMS Contractile dysfunction associated with myocardial ischaemia is a significant cause of morbidity and mortality in the elderly. Strategies to protect the aged heart from ischaemia-mediated pump failure are needed. We hypothesized that troponin I-mediated augmentation of myofilament calcium sensitivity would protect cardiac function in aged mice. METHODS AND RESULTS To address this, we inv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation research

دوره 91 6  شماره 

صفحات  -

تاریخ انتشار 2002